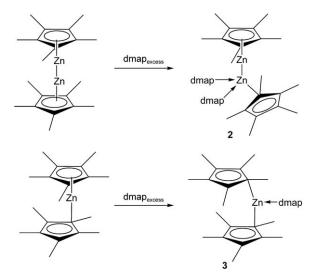
Low-Valent Lewis Acids

DOI: 10.1002/anie.200803736

The Reaction of Dizincocene with Preservation of the Zn-Zn Bond**

Daniella Schuchmann, Ulrich Westphal, Stephan Schulz,* Ulrich Flörke, Dieter Bläser, and Roland Boese


Dedicated to Professor Edgar Niecke on the occasion of his 70th birthday

Since the epoch-making synthesis of $[Cp_2^*Zn_2]$ (1; $Cp^*=$ Me₅C₅),^[1] the first complex containing a Zn-Zn bond, by Carmona et al. in 2004, four compounds of the type R₂Zn₂ have been synthesized and structurally characterized that are stabilized by sterically demanding organic substituents: $R = EtMe_4C_5,^{[2]}$ $[2,6-(2,6-iPr_2C_6H_3)_2C_6H_3]$, [3] $[(2,6-iPr_2C_6H_3)NC(Me)]_2,^{[5]}$ $iPr_2C_6H_3)NC(Me)_2CH],^{[4]}$ $Me_2Si[N(2,6-iPr_2C_6H_3)]_2$, [6] and 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-bian).^[7] Although the nature of the Zn-Zn bond, and in particular in cyclopentadienylsubstituted complexes, has been theoretically investigated by several groups,[8] only limited information on the reactivity of such complexes is given. Carmona et al. reported reactions of 1 with H_2O , tBuOH, NCXyl ($Xyl = 2,6-Me_2C_6H_3$), [1] and other Lewis bases, such as NMe₃, pyridine, and PMe₃, [2] but either no reaction occurred, or disproportionation into elemental zinc and the corresponding zinc(II) compound was observed. Reactions with ZnR_2 (R = Me, 2,4,6-Me₃C₆H₂ (Mes)) yielded half-sandwich complexes [Cp*ZnR], whereas reaction with iodine led to oxidation and subsequent formation of [Cp₂*Zn] and ZnI₂. In contrast, no reaction was observed with H₂, CO, and CO2. From these observations, reactions with preservation of the Zn-Zn bond appeared to be problematical.

Recently, we became interested in organozinc complexes containing sterically less hindered *N*,*N'*-chelating amidinate substituents, ^[9] which might serve as starting reagents for the synthesis of corresponding complexes with a Zn–Zn bond. We also began investigations into the general reactivity of the Zn–Zn bond. These studies focused primarily on reactions of [Cp₂*Zn₂] (1) because of the steric and electronic flexibility of the Cp* substituent. ^[10] As part of our interest in the Lewis acidity of Group 13 compounds, we investigated the Lewis acidity of 1. We have shown that the strong Lewis base 4-

dimethylaminopyridine (dmap) is very powerful tool for the synthesis of Group 13 metal Lewis acid-base adducts.^[11] Reaction of **1** with dmap resulted in the formation of the unexpected adduct **2**, in which two dmap molecules bind in a geminal coordination mode to one of the two zinc atoms with preservation of the Zn–Zn bond.

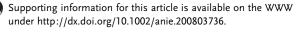
A toluene/n-pentane (1:4) solution of **1** reacted with two equivalents and with an excess of dmap at 0°C to give compound **2**, which was isolated after crystallization at -30°C as a pale yellow crystalline solid. In contrast to previous reports with other Lewis bases, no disproportionation reaction was observed. [2] The analogous reaction of $[Cp_2^*Zn]$ with dmap yielded $[Cp_2^*Zn(dmap)]$ (3; Scheme 1)

Scheme 1. Synthesis of the dmap adducts 2 and 3.

The $^1\text{H-}$ and ^{13}C NMR spectra of **2** and **3** show signals corresponding to the Cp* groups and to dmap. No indication of zinc hydride complex formation was found in the ^1H NMR spectrum of **2** (no signal between $\delta = 4$ –5 ppm), and the IR spectrum had no absorption peak between 1650 and 1900 cm $^{-1}$, which is the typical range for zinc hydride complexes. $^{[12]}$ The ^1H NMR spectrum of single crystals of **2**, which were obtained from a n-pentane/toluene solution, has additional signals owing to the presence of toluene. The Cp* substituents result in only one resonance at 25 °C (**2**: $\delta = 2.03$, **3**: 2.08 ppm), which points to fast exchange reactions between the non-equivalent Cp* substituents in **2** and indicates η^5 -bonded Cp* groups in solution. In contrast, the ^1H NMR

[*] D. Schuchmann, Dr. U. Westphal, Prof. Dr. S. Schulz, D. Bläser, Prof. R. Boese

Institute of Inorganic Chemistry, University of Duisburg-Essen Universitätsstrasse 5–7, S07 S03 C30, 45117 Essen (Germany) Fax: (+49) 201-183-3830


E-mail: stephan.schulz@uni-due.de

Homepage: http://www.uni-duisburg-essen.de/chemie/institute.

Dr. U. Flörke

Department Chemie, Universität Paderborn Warburger Strasse 100, J6.214, 33098 Paderborn (Germany)

[**] S.S. is grateful to the DFG for financial support, and D.S. thanks the Fonds der Chemischen Industrie for a doctoral fellowship.

Communications

spectrum of **2** recorded at $-95\,^{\circ}$ C has two broad and well-separated signals ($\delta = 2.48$, 2.73 ppm) of equal intensity that are due to the Cp* groups. The chemical shifts of both the Cp* and dmap resonances of **2** change with temperature, indicating a temperature-dependent equilibrium reaction. The dissociation enthalpy of **2** in solution ($\Delta H_{\rm Diss} = -40.4 \, \text{kJ} \, \text{mol}^{-1}$) was determined from these NMR spectra. He dissociation enthalpy of **3** ($\Delta H_{\rm Diss} = -50.6 \, \text{kJ} \, \text{mol}^{-1}$) was also determined, and demonstrates the higher Lewis acidity of [Cp₂*Zn₂] compared to [Cp₂*Zn₂].

Single crystals of **2** and **3** (Figure 1) were obtained from solutions in *n*-pentane/toluene (**2**) and *n*-pentane (**3**) upon storage at $-30\,^{\circ}$ C.^[15] The central zinc atom in **3** is coordinated by a single dmap molecule and two η^2 -bonded Cp* groups (Zn1–C10 2.090(5), Zn1–C12 2.483(5); Zn1–C20 2.169(5), Zn1–C22 2.300(5) Å). In contrast, the reaction of the sterically less-hindered compound ZnMe₂ with dmap gave the bisadduct [(dmap)₂ZnMe₂].^[16] The two dmap molecules in **2** coordinate in a geminal fashion to one zinc atom (Zn2), whereas the second zinc center (Zn1) is coordinated only by

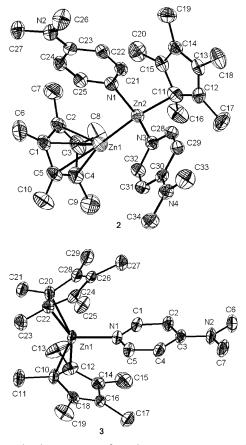


Figure 1. Molecular structures of 2 and 3. H atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: 2: Zn1–Zn2 2.418(1), Zn1–C1 2.425(2), Zn1–C2 2.395(2), Zn1–C3 2.328(2), Zn1–C4 2.300(2), Zn1–C5 2.360(2), Zn2–C11 2.174(2), Zn2–N1 2.115(2), Zn2–N3 2.125(2); Cp^{**}_{centr}-Zn1-Zn2 159.6, Zn1-Zn2-C11 115.4(1), N1-Zn2-N3 95.3(1), N1-Zn2-Zn1 105.0(1), N3-Zn2-Zn1 110.1(1), N1-Zn2-C11 113.9(1), N3-Zn2-C11 115.0(1). 3: Zn1–C10 2.090(5), Zn1–C12 2.483(5), Zn1–C20 2.169(5), Zn1–C22 2.300(5), Zn1–N1 2.024(3); N1-Zn1-C10 115.6(2), N1-Zn1-C20 115.8(2).

one η⁵-bonded Cp* substituent (Cp*_{centr}-Zn1 2.033 Å; compare with 2.04 Å in 1).^[17] The Zn1– C_{Cp^*} bond lengths (2.300(2)–2.395(2) Å) vary more strongly than those observed in 1 (2.27–2.30 Å), as the atom Zn1 does not adopt the central position over the Cp* substituent. [1a] The coordination sphere of Zn2 is completed by a σ-bonded Cp* ligand (Zn2-C11 2.174(2) Å); the distances to the next closest C_{Cp^*} atoms (Zn2-C15 2.696(3), Zn2-C12 2.773(3) Å) are significantly elongated. The Zn-N bonds in 2 (Zn2-N1 2.115(2), Zn2-N3 2.125(2) Å) are significantly longer than that in 3 (Zn1-N1 2.024(3) Å), but shorter than those observed for [Me₂Zn- $(dmap)_2$] (Zn1-N1/2 2.177(2) Å), which contains a fourcoordinate zinc atom. [16] The central Zn1-Zn2 bond in 2 (2.418(1) Å) is significantly longer than that in $\mathbf{1} (2.305(3) \text{ Å})$; this difference of over 0.11 Å is most likely due to the higher coordination number of Zn2. This bond length is the longest Zn-Zn bond observed to date; Zn₂R₂ complexes typically have Zn–Zn bond lengths ranging from 2.29 to 2.35 Å.[1-7] Comparable Zn-Zn bond lengths were observed only in Hbridged organozinc complexes of the general type [{RZnH}₂] $(R = [2,6-(2,6-iPr_2C_6H_3)_2C_6H_3]$ $2.408(1) \text{ Å}^{[3]}$ [{(2,6 $iPr_2C_6H_3)NC(Me)_{2}CH$ 2.451(1) Å^[18]). Whereas **1** has an almost linear structure (177.4(1)°), 2 deviates significantly from linearity owing to the coordination of two dmap molecules. The deviation for the η⁵-bound Cp* ligand (Zn2-Zn1-Cp* 159.6°) is as expected les pronounced that that of the σ-bound Cp* ligand (Zn1-Zn2-C11 115.4(1)°). The dmap molecules adopt an almost orthogonal orientation. In particular, the N1-Zn2-N3 bond angle (95.3(1)°) is significantly smaller than the N-Zn2-Zn1 (105.0(1), 110.1(1)°) and N-Zn2-C11 bond angles (113.9(1), 115.0(1)°).

To better understand the formation and the bonding situation in 2, DFT calculations were performed. [19] The formation of [Cp₂*Zn₂(dmap)] (1') by coordination of one dmap molecule to 1 is exothermic $(-4.6 \text{ kcal mol}^{-1})$, with an only marginal elongation of the Zn-Zn bond (1: 2.36 Å, 1': 2.37 Å). However, the zinc atoms in 1' carry different partial charges. In 1', the dmap-coordinated zinc atom is more electropositive (0.99) than the second Zn atom (0.76), whereas in 1 both zinc centers are equally charged (0.89). The coordination of a second dmap molecule in a vicinal position is endothermic $(+2.6 \text{ kcal mol}^{-1})$, whereas geminal coordination is strongly exothermic (-9.2 kcal mol⁻¹). Consequently, the formation of 2 with geminal coordination of the dmap molecules is strongly favored $(-13.8 \text{ kcal mol}^{-1})$, $-57.7 \text{ kJ} \text{ mol}^{-1}$) over vicinal coordination ($-2.0 \text{ kcal} \text{ mol}^{-1}$). Upon coordination of two dmap molecules, the Zn-Zn bond in 2 significantly increases in length to 2.44 Å, which agrees very well with the experimental findings (2.418(1) Å). Both zinc atoms in 2 are differently charged, with Zn1 (0.60) carrying a significantly higher electronic charge than the dmap-coordinated Zn2 atom (1.15). The NBO analysis shows a decrease in the bond order from 0.93 (96.7% s, 2.1% p, 1.2 % d) in 1 to 0.85 (92.9 % s, 7.0 % p, 0.1 % d) in 2 owing to population of the antibonding Zn-Zn LUMO, which agrees very well with previously published bonding analyses for 1.[1b]

The unexpected formation of $\mathbf{2}$ is the first reaction of $[Cp_2^*Zn_2]\mathbf{1}$ that proceeds with preservation of the central Zn–Zn bond. The reaction to form $\mathbf{2}$ is strongly exothermic, which

makes the synthesis of adducts with other strong Lewis bases likely, and will allow a detailed understanding of the reactivity of 1 and the chemical stability of the Zn–Zn bond to be investigated.

Experimental Section

All manipulations were performed under an argon atmosphere. Solvents were dried over Na/K and degassed prior to use. 1H and $^{13}C\{^1H\}$ NMR spectra were recorded on a Bruker Avance 500 spectrometer and were internally referenced to C_6D_5H (1H : $\delta=7.154$ ppm, ^{13}C : $\delta=128.0$ ppm). IR spectra were recorded on an ALPHA-T FT-IR spectrometer. Melting points were measured in sealed capillaries and were not corrected.

2: dmap (0.24 g, 2.0 mmol) dissolved in toluene (5 mL) was added at 0 °C to a solution of $[Cp_2^*Zn_2]$ (0.20 g, 0.5 mmol) in *n*-pentane (5 mL) and stirred for 2 h at -25 °C. The resulting suspension was dissolved in additional 5 mL of toluene and stored at -30 °C. Pale yellow crystals of **2**-toluene were obtained after 7 days. Yield of isolated crystals 0.08 g (0.12 mmol, 25 %). M.p.: 105 °C. ¹H NMR (500 MHz, C₆D₆, 25 °C): δ = 2.03 (s, 30 H, C₅Me₅), 2.09 (s, 1.5 H, toluene), 2.20 (s, 12 H, NMe₂), 6.09 (dd, $^3J_{\rm HH}$ = 6.3, $^3J_{\rm HH}$ = 1.6 Hz, 4 H, C(3)H), 6.89–7.20 (m, 2.5 H, toluene), 8.46 ppm (dd, $^3J_{\rm HH}$ = 6.3, $^3J_{\rm HH}$ = 1.6 Hz, 2 H, C(2)H). 13 C{¹H} NMR (125 MHz, C₆D₆, 25 °C): δ = 10.4 (C₅Me₅), 38.3 (NMe₂), 106.8 (C(3)), 109.0 (C_5 Me₅), 150.5 (C(2)), 154.3 ppm (C(4)). IR (Nujol): $\bar{\nu}$ = 2853, 1611, 1461, 1377, 1224, 1013, 802 cm⁻¹.

3: A solution of [Cp*Zn] (0.67 g, 2.0 mmol) and dmap (0.48 g, 4.0 mmol) in *n*-hexane (15 mL) were heated under reflux for 1 h and then stored at -30 °C. Colorless crystals of 3 were obtained after 36 h. Yield of isolated crystals 0.49 g (1.1 mmol, 55 %). M.p.: 205 °C. 1 H NMR (500 MHz, C_6D_6 , 25 °C): $\delta = 1.99$ (s, 6H, NMe2), 2.08 (s, 30 H, C_5Me_5), 5.68 (dd, $^3J_{\rm HH} = 6.9$, $^3J_{\rm HH} = 1.6$ Hz, 2 H, C(3)H), 7.22 ppm (dd, $^3J_{\rm HH} = 6.9$, $^3J_{\rm HH} = 1.6$ Hz, 2H, C(2)H). 13 C{ 1 H} NMR (125 MHz, C_6D_6 , 25 °C): $\delta = 12.3$ (C_5Me_5), 38.3 (NMe2), 105.3 (C(3)), 114.1 (C_5Me_5), 147.5 (C(2)), 154.5 ppm (C(4)). IR (Nujol): $\tilde{v} = 2923$, 1623, 1546, 1440, 1390, 1261, 1228, 1075, 1021, 801, 604 cm⁻¹.

Received: July 30, 2008 Revised: October 27, 2008

Published online: December 15, 2008

Int. Ed. 2008, 47, 6526-6536.

Keywords: Lewis acids · low-valent compounds · X-ray diffraction · zinc

- [1] a) I. Resa, E. Carmona, E. Gutierrez-Puebla, A. Monge, Science 2004, 305, 1136–1138; b) D. del Río, A. Galindo, I. Resa, E. Carmona, Angew. Chem. 2005, 117, 1270–1273; Angew. Chem. Int. Ed. 2005, 44, 1244–1247. For a review, see: E. Carmona, A. Galindo, Angew. Chem. 2008, 120, 6626–6637; Angew. Chem.
- [2] A. Grirrane, I. Resa, A. Rodriguez, E. Carmona, E. Alvarez, E. Gutierrez-Puebla, A. Monge, A. Galindo, D. del Río, R. A. Andersen, J. Am. Chem. Soc. 2007, 129, 693 703.
- [3] a) Z. Zhu, R. J. Wright, M. M. Olmstead, E. Rivard, M. Brynda, P. P. Power, Angew. Chem. 2006, 118, 5939-5942; Angew. Chem. Int. Ed. 2006, 45, 5807-5810; b) Z. Zhu, M. Brynda, R. J. Wright, R. C. Fischer, W. A. Merrill, E. Rivard, R. Wolf, J. C. Fettinger, M. M. Olmstead, P. P. Power, J. Am. Chem. Soc. 2007, 129, 10847-10857.
- [4] Y. Wang, B. Quillian, P. Wei, H. Wang, X.-J. Yang, Y. Xie, R. B. King, P. von R. Schleyer, H. F. Schaefer III, G. H. Robinson, J. Am. Chem. Soc. 2005, 127, 11944–11945.
- [5] X.-J. Yang, J. Yu, Y. Liu, Y. Xie, H. F. Schaefer, Y. Liang, B. Wu, Chem. Commun. 2007, 2363 – 2365.

- [6] Y.-C. Tsai, D.-Y. Lu, Y.-M. Lin, j.-K. Hwang, J.-S. K. Yu, Chem. Commun. 2007, 4125–4127.
- [7] I. L. Fedushkin, A. A. Skatova, S. Y. Ketkov, O. V. Eremenko, A. V. Piskunov, G. K. Fukin, *Angew. Chem.* 2007, 119, 4380– 4383; *Angew. Chem. Int. Ed.* 2007, 46, 4302–4305.
- [8] a) Y. Kan, J. Mol. Struct. 2007, 805, 127-132; b) A. Velazquez, I. Fernández, G. Frenking, G. Merino, Organometallics 2007, 26, 4731-4736; c) M. R. Philpott, Y. Kawazoe, Chem. Phys. 2007, 333, 201-207; d) K. N. Pandey, J. Organomet. Chem. 2007, 692, 1058-1063; e) H. Wang, C. Yang, B. Wan, K.-L. Han, J. Theor. Comput. Chem. 2006, 5, 461-473; f) M. R. Philpott, Y. Kawazoe, J. Mol. Struct. 2006, 776, 113-123; g) J. W. Kress, J. Phys. Chem. A 2005, 109, 7757-7763; h) Y. Xie, H. F. Schaefer III, R. B. King, J. Am. Chem. Soc. 2005, 127, 2818-2819.
- [9] a) T. Eisenmann, J. Khanderi, S. Schulz, U. Flörke, Z. Anorg. Allg. Chem. 2008, 634, 507-513; b) M. Münch, U. Flörke, M. Bolte, S. Schulz, D. Gudat, Angew. Chem. 2008, 120, 1535-1539; Angew. Chem. Int. Ed. 2008, 47, 1512-1516; c) S. Schulz, M. Münch, U. Flörke, Z. Anorg. Allg. Chem. 2008, 634, 2221-2225.
- [10] a) P. Jutzi, N. Burford, Chem. Rev. 1999, 99, 969 990; b) P. H. M. Budzelaar, J. J. Engelberts, J. H. van Lenthe, Organometallics 2003, 22, 1562 1576.
- [11] a) F. Thomas, S. Schulz, M. Nieger, Eur. J. Inorg. Chem. 2001, 161–166; b) S. Schulz, M. Nieger, Organometallics 2000, 19, 2640–2643.
- [12] a) M. Krieger, R. O. Gould, B. Neumüller, K. Harms, K. Dehnicke, Z. Anorg. Allg. Chem. 1998, 624, 1434–1442; b) A. Looney, R. Han, I. B. Gorrell, M. Cornebise, K. Yoon, G. Parkin, A. L. Rheingold, Organometallics 1995, 14, 274–288; c) R. Han, I. B. Gorrell, A. Looney, G. Parkin, J. Chem. Soc. Chem. Commun. 1991, 717–719; d) W. Kläui, U. Schilde, M. Schmidt, Inorg. Chem. 1997, 36, 1598–1601.
- [13] Temperature-dependent NMR spectra of **2** are given in the Supporting Information.
- [14] a) M. B. Power, J. R. Nash, M. D. Healy, A. R. Barron, Organo-metallics 1992, 11, 1830–1840; b) A. Kuczkowski, S. Schulz, M. Nieger, P. R. Schreiner, Organometallics 2002, 21, 1408–1419. Experimental NMR data are given in the Supporting Information.
- [15] Bruker AXS SMART APEX CCD diffractometer (Moka radiation, $\lambda = 0.71073 \text{ Å}$; T = 203(2) (2), 153(2) K (3)). Structures were solved by direct methods (SHELXS-97, G.M. Sheldrick, Acta Crystallogr. Sect. A 1990, 46, 467) and refined by full-matrix least-squares on F^2 . Semi-empirical absorption corrections were applied. All non-hydrogen atoms were refined anisotropically and hydrogen atoms by a riding model (SHELXL-97, Program for Crystal Structure Refinement, G. M. Sheldrick, University of Göttingen, 1997). $C_{34}H_{50}N_4Zn_2\cdot 0.25 C_7H_8$, $M_r = 666.54$, pale yellow crystal $(0.28 \times$ 0.22×0.13 mm), triclinic, $P\bar{1}$; a = 10.8055(6), b = 11.1214(6), c =17.1985(9) Å, $\alpha = 71.822(2)$, $\beta = 89.356(3)$, $\gamma = 75.260(3)^{\circ}$, V =1893.78(18) Å³; Z=2, $\mu=1.293 \text{ mm}^{-1}$, $\rho_{\text{calcd}}=1.169 \text{ g cm}^{-3}$; 73213 reflections $(2\theta_{\text{max}} = 58^{\circ})$, 11020 unique $(R_{\text{int}} = 0.0640)$, 395 parameters, largest max./min. in the final difference Fourier synthesis $1.054 \text{ e Å}^{-3}/-0.285 \text{ e Å}^{-3}$, max./min. transmission 0.8816/0.7820; $R_1 = 0.0463$ $(I > 2\sigma(I))$, wR_2 (all data) = 0.1367. Disordered toluene molecule (C61-C64) with inversion center, SOF 0.5. **3**: $C_{27}H_{40}N_2Zn$, $M_r = 457.98$, colorless crystal (0.48× 0.44×0.13 mm), triclinic, $P\bar{1}$; a = 9.848(5), b = 10.104(6), c =14.489 (8) Å, $\alpha = 98.791(11)$, $\beta = 98.449(11)$, $\gamma = 111.355(11)$ °, $V\!=\!1294.4(12)~\textrm{Å}^3;~Z\!=\!2,~\mu\!=\!0.963~\textrm{mm}^{-1},~\rho_{\textrm{calcd}}\!=\!1.175~\textrm{g\,cm}^{-3};$ 10044 reflections ($2\theta_{\text{max}} = 54^{\circ}$), 5669 unique ($R_{\text{int}} = 0.0826$), 283 parameters, largest max./min. in the final difference Fourier synthesis $0.989 \text{ e Å}^{-3}/-0.560 \text{ e Å}^{-3}$, max./min. transmission 0.8850/0.6549; $R_1 = 0.0695$ $(I > 2\sigma(I))$, wR_2 (all data) = 0.1627. CCDC-694349 (2) and CCDC-694247 (3) contain the supplementary crystallographic data for this paper. These data can be

Communications

- obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [16] F. Thomas, S. Schulz, M. Nieger, Angew. Chem. 2005, 117, 5813–5815; Angew. Chem. Int. Ed. 2005, 44, 5668–5670.
- [17] Jones et al. reported the reaction of low-valent magnesium complexes with four different Lewis bases, yielding novel bisadducts that all adopt the expected vicinal binding mode. These adducts were characterized by single crystal X-ray diffraction. S. P. Green, C. Jones, A. Stasch, Angew. Chem. 2008, 120, 9219–1223; Angew. Chem. Int. Ed. 2008, 47, 9079–9083.
- [18] H. Hao, C. Cui, H. W. Roesky, G. Bai, H.-G. Schmidt, M. Noltemeyer, Chem. Commun. 2007, 1118–1119.
- [19] DFT calculations were carried out with the Gaussian03 suite of programs (Gaussian03 (Revision D.02): M. J. Frisch et al., Gaussian Inc., Pittsburgh, PA, 2003; see the Supporting Information). The molecular structures were obtained by performing a complete energy optimization of all geometric parameters at the B3LYP/SVP level; SVP is the split-valence basis set with additional polarization functions of Ahlrichs et al. Atomic charges, which were calculated from NBO population analyses for 2, are given in the Supporting Information.